

of the components of running footwear The latest technology changes in materials

Shoe Anatomy-Last

Last Construction

Shoe Anatomy- Outsole

<u>Shoe Outsole</u>

Polyurethane · Non-marking, more dense · Not going to compress as easy Blown or Gum Rubber · Configuration dependent or manufacturer High Density Carbon Rubber

Decreased weight

Shoe Anatomy- Outsole

Shoe Outsole

Improved technology going into outsole • Very light-weight • Very responsive • No flat spots that allow the shoe to move with you (NB) Integrated midsole & outsole Midsole still present in others • Adidas • New Balance

Shoe Anatomy-Midsole

<u>Midsole Material</u>

E.V.A. (Most common)

- Made in different densities
- Sheet cut
- Lot of wasted material and more costly – not using much any more
- Compression molded
 Almost everything now
 More air in midsole to
 decreases weight

Shoe Anatomy- Midsole

Midsole Material

Polyurethane
Denser and heavier
than E.V.A.
Easier to shape
Feels better
No difference as far as
shock absorption
Better durability
Watch for fake

Shoe Anatomy- Midsole

Midsole Additions

Cushioning units · Air, Gel, Waves, Shocks, etc.. · Primarily marketing Stabilizing units · Different density midsole · Firmer under medial heel · Plastic "footbridge"

Shoe Anatomy-Midsole

Shoe Anatomy-Midsole

Shoe Anatomy-Midsole

 Axis that follows the normal COM of normal foot biomechanics
 More flexible More natural

Shoe Anatomy-Midsole

NIKE

Midsole: Lunar® Lunarlon compressed foam Changes in density medial and lateral To create a more dynamic response to amount of control needed Phylon foam Increased duramete Casing of midsole

Shoe Anatomy-Midsole

Midsole: Lunar® 2014 Lunarlon compressed foam Still have medial to lateral density changes Eliminated the Phylon foam casing

Shoe Anatomy- Midsole

NEW BALANCE

Midsole: RevLite® Light-weight foam (10% lighter than Lunar® Utilizes a ground contact EVA cradle Stability created by "pods" on both medial and lateral side

Shoe Anatomy- Midsole

NEW BALANCE

Midsole: Fresh Foam® Similar to Lunar® Change in responsiveness early vs. late in the race Utilizes convex (medial side) and concave (lateral side) technology to change support & weight

Shoe Anatomy-Midsole

BROOKS

Midsole: DNA and Super DNA® DNA encapsulated midsole Non-Newtonian liquid Reacts to the individual Liquid to solid properties

Midsole Geometry

LAST SHAPE

LAST PROFILE

More straight lasted vs. traditional sculpted Lighter without the need for stability (plastic) modules

ted Toe spring the need stic)

Through Geometry

4

Shoe Anatomy- Upper

Toe Box Length

Width-Bunions, wide forefoot Depth – claw or hammertoes, thick All running shoe brands have all combinations Not all running shoe companies change the last width

Shoes that tend to run <u>wider</u> in toe box: New Balance; Brooks; Saucony

<u>Narrower</u>: Asics; Nike: Mizuno

Shoe Anatomy- Upper Nike Flynit® NB Fantom Fit® Saucony Flex Film®

Shoe Anatomy-Upper

<u>Vamp</u> Area where laces are placed Must be adequate for forefoot <u>Tongue</u> Only in laced shoes May be tethered by flexible straps on tongue May become irritant if tongue slides to side

Shoe Anatomy-Upper

Heel Counter

Pressed Cardboard

Holds shape of shoe
 Thermoplastic

traditional shoes

Internal or

Shoe Anatomy-Insole

<u>Insole</u>

of orthoses or other Function to protect foot from stitching ("sock

Traditional Shoe Categories <u>Cushion/Neutral Shoe</u> Sub-divided into Light, Medium and Heavy Cushion categories <u>Saucony ProGrid Ride</u>; Asics Cumulus; Brooks Ghost; Mizuno Wave Rider; Nike Pegasus

Traditional Shoe Categories

Straight-Lasted Cushion Shoe Saucony Echelon; Brooks Dyad; New Balance 840 Notes:

Single de

Traditional Shoe Categories

<u>Guidance (Mild Stability) Shoe</u> Saucony ProGrid Guide; Asics DS Trainer; Brooks Ravenna; Mizuno Elixin Nike Lunar Glide Notes

Dual density midsole to provide increased stability with a more semi-curved lasted sha

6

Traditional Shoe Categories <u>Stability (Moderate) Shoe</u> <u>Saucony ProGrid Omni;</u> Asics 2170; Brooks Adrenaline; Nike Structure Notes: Dual density materials that incorporate more of the midsole to provide increased stability with a more semi-curved lasted shape

Traditional Shoe Categories

Racing Flat Saucony Grid Type A4 (3-5K) Notes: For Race ONLY. Will train in other shoes Can be dual density (marathons)

Traditional Shoe Categories

Trail Running Shoe Saucony Xodus 2.0 Notes: More tear resistant and more durable outsole designed for unstable surface accommodation

Traditional Shoe Calegories Minimal Running Shoe Saucony ProGrid Mirage; Brooks "Pure" Line; Altra; New Balance Minimus; Saucony Kinvara; Nike Lunar Fly Notes:

Traditional Shoe Categories

Traditional Shoe Categories

<u>Minimal/Barefoot Running</u> Merrell Glove Notes: No longer have to fit each toe into it's own compartment.

Almost every running shoe company now has there own version of a minimalist shoe

Traditional Shoe Categories

Shoe Recommendations

Based on plantar static foot type: Assigning shoe based on foot type does not decrease injury in Marine Corp Recruits (Knapik et al. 2010 Am J Sports Med)

Only one piec of the puzzle!!

Shoe Recommendations

The effect of three different levels of footwear stability on pain outcomes in women runners: a randomized control trial. (Byan et al. 2010 British Journ of Sports Med)

81 Women were categorized into 3 different foot posture types: neutral, pronated, highly pronated then randomly placed into 3 categories of shoe. (neutral, stability, or motion control)

RESULTS:

- 32% of the women missed training days over the course of the study.
- Motion control shoes "resulted in both a greater number of injured runners and missed training days than the other two shoe categories."
 Motion control shoes faired very poorly.
 - The stability shoe reported the fewest missed days (51) and the motion control shoe (79) the most.

Shoe Recommendations

When in Doubt???

If symptoms appear to be due to overstabilization = Less shoe than current If symptoms appear to be due to <u>under-stabilization</u> = More shoe than current

If not sure or symptom onset appears to due to worn-out shoes (ascertained through running hx.) = Same shoe and proceed with caution

Shoe Recommendations

When to Replace Running Shoes??

Mileage 15 years ago: 500-700 mile

Last 2 years: 300-400 miles
 Consumer wants lighter shoe!
 Symptom onset
 When their "pain" returns from a prior injury
 When the runner starts getting a little more sore than usual after a run

Shoe Recommendations

Other Considerations: Two "different" feet Flexible forefoot / poor midfoot locking ability Ankle Dorsiflexion ROM or Late pronators or delayed resupinators Shoes for training & shoes for gait retraining

You Will Make Mistakes!

