

ARCADIA

Glenside, PA

Definitions of Run	ner Populations
--------------------	-----------------

POPULATION	DEFINITION
Track: Sprinters	Track athletes competing in distances of up to 400m
Track: Middle-Distance	Track athletes competing in distances of 800-3000m
Track: Long-Distance	Track athletes competing in 5000 or 10,000m in races
Novice Runners	Runners with no regular running within the previous year
Recreational Runners	Non-competitive runners or runners participating in road races shorter than 10km
Cross-Country	Runner competing in cross-country races
Road: Long-Distance	Runners competing in races between 10km and less than a marathon
Marathon	Runners competing in a marathon
Ultra-Marathon	Runners competing in races longer than a marathon

Kluitenberg et al, Sports Med 2015

Injuries Happen... 46-65% of runners experience an injury yearly Marathon training incidence as high as 90% Training errors account for 60–70% of all running injuries Excessive mileage Excessive intensity Sudden change of training routines Etc.

Injury Prevalence in Track and Field

- Annual injury incidence between 61% and 76% (Bennell et al, Sports Med 1999; D'Souza et al, Br J Sports Med 1994)
- 2011 IAAF Championships
 37.3 injuries per 1000 athlete participations
 - Thigh most common injury
 - site at 27%
 - 48% injuries lead to timeloss
 - (Alonso et al, Br J Sports Med 2012)

Acute Injury Frequency

	Injury Proportion	
Track: Sprinters	7.2%	
Track: Middle Distance	12.8%	
Track: Long Distance	15.6%	
Road: Long Distance	0.9%	
Marathon	7.8%	
Ultra Marathon	65.6%	

Kluitenberg et al, Sports Med 2015-Systematic Review/Meta-Analysis

Acute Injuries in Track and Field Athletes

A 3-Year Observational Study at the Penn Relays Carnival With Epidemiology and Medical Coverage Implications

David Opar,^{+†} PhD, Jonathan Drezner,⁵ MD, Anthony Shield,[†] PhD, Morgan Williams,^{III} PhD, David Webner,^{*} MD, Brian Sennett,^{*} MD, Rahul Kapur,^{*} MD, Marc Cohen,^{*} MD, Jarger Lilaced^{*} MD, Anac Celessis,^{*} JAN, end Retex F, Constella, ^{*†††} MD,

Event	Relative injury rates (injuries per 1000)
100m	13.5
110m Hurdles	14.5
4 x 100m	4.5
4 x 200m	2.7
4 x 400m	6.4
400m Hurdles	13.8
Mile	11.6
5000m	3.7
10,000m	8.5
3000m Steeplechase	18.1

Time-Loss From Injury at 1-Year

	Injury Proportion	
Track: Sprinters	63.8%	
Track: Middle Distance	63.9%	
Novice Runners	27.3%	
Recreational Runners	55.0%	
Cross-Country	3.2%	
Road: Long Distance 31.7%		
Marathon	52.0%	
Ultra Marathon	64.6%	
Kluitenberg et al, Spo	orts Med 2015-Systematic Review/Meta-Analysis	

Age and Injury Risk

- Track and field athletes older than 30 years are at an elevated risk for injuries and time-loss (Alonso et al, P | Sooth Med 2012; Edouard et al, Clin J Sports Med 2014)
- Compared with masters male track and field athletes, college and high school athletes had a smaller likelihood of sustaining a minor orthopaedic injury (Opar et al, Am J Sports Med 2015)
- · Physiological changes occur in the aging athlete Decline in strength
 - Decline in muscle voluntary activation capacity – Etc.
 - (Brisswalter & Nosaka, Sports Med 2013; Maharam et al, Sports Med 1999)

Role of Biomechanics with RRI

- · Abnormal biomechanics associated with running injuries
 - PFPS (Noehren et al, Clin Biomech 2012)
 - ITBS (Noehren et al, J Orthop Sports Phys Ther 2014)
 - Tibial Stress Fx (Milner et al, Clin Biomech 2007)

Double-limb and single-limb support

RUNNING

- Series of coordinated jumps requiring vertical support and forward drive
- Single-limb support with a period of double-leg float (or flight) time Less than 40% stance
 - Greater than 60% float
- Runners require greater joint motion and greater eccentric work

DiCharry J 2010 Clin Sports Med; Novacheck, Gait Posture 1998; & James, JAMA 1968; Ounpuu, Instr Course Lect 1990

*Critical Velocity ~2.5m/s or 5.6mph

	Mean J	oint RO	M			
Nor	mative Valu	ues for l	Running*			
Ankle Knee Hip						
Initial contact	4° dorsiflexion					
Loading response	3° plantarflexion					
Mid stance	17° dorsiflexion					
Toe off	25° plantarflexion					
Early swing	32° plantarflexion					
Mid swing	2° plantarflexion					
Late swing	6° dorsiflexion					
Mean values for health motion analysis while	ny recreational runners (9 fr running at a fast pace (grea	emale, 5 male; 24-4 ter than 7 ½-minut	45 years of age) measured via e mile).			

*Adapted from Pink et al 1994

Nor	Mean J mative Valu	oint ROM ues for Ru	Inning*			
Ankle Knee Hip						
Initial contact	4° dorsiflexion	15° flexion				
Loading response	3° plantarflexion	21° flexion				
Mid stance	17° dorsiflexion	38° flexion				
Toe off	25° plantarflexion	13° flexion				
Early swing	32° plantarflexion	13° flexion				
Mid swing	2° plantarflexion	103° flexion				
Late swing	6° dorsiflexion	11° flexion				
Mean values for health	v recreational runners (9 f	emale, 5 male; 24-45 ye	ars of age) measured via			

otion analysis while running at a fast pace (greater than 7 ½-minute mile).

*Adapted from Pink et al 1994

	Mean Jo	int ROM	
Norn	native Valu	es for Runi	ning*
	Ankle	Knee	Hin

	AllKic	Kilce	
Initial contact	4° dorsiflexion	15° flexion	20° flexion
Loading response	3° plantarflexion	21° flexion	22° flexion
Mid stance	17° dorsiflexion	38° flexion	17° flexion
Toe off	25° plantarflexion	13° flexion	11° extension
Early swing	32° plantarflexion	13° flexion	9-10° extension
Mid swing	2° plantarflexion	103° flexion	31° flexion
Late swing	6° dorsiflexion	11° flexion	15-17° flexion
Mean values for health motion analysis while	ny recreational runners (9 f running at a fast pace (grea	emale, 5 male; 24-45 ye iter than 7 ½-minute m	ears of age) measured via ile).

*Adapted from Pink et al 1994

Kinematics-Sagittal Plane

DiCharry, Clin Sports Med 2010: Franz, Gait Posture 2009: Novacheck, Gait Posture 1998; Ounpuu, Inst Course Lect 1990

Biomechanics-Kinematics

Frontal/Transverse Plane-Kinematic Parameters

	Mean	SD	
Hip adduction	12.1°	4.1	
Hip IR	14.3°	12.8	
Hip ER	15.0°	12.4	
Knee flex max	110.1°	18.4	
Knee flex min	8.3°	6.0	
Ankle eversion	2.5°	3.0	
Pelvic rotation max	7.6°	3.5	

(adapted from Riley et al, Med Sci Sports Ex 2008)

Muscle Function

Biomechanics-Muscle Function

- Peak activation of leg muscles during braking phase of ipsilateral contact, except rectus femoris (Mero & Komi, Med Sci Sport Ex 1987
 - Biceps Femoris and Gastrocnemius active during pushoff
 - Biceps Brachii of right arm active before and during breaking phase of left leg
 - Lat Dorsi primarily active with Biceps Brachii
 - Rectus abdominus active at the end of ipsilateral contact and then at contralateral contact.

Biomechanics-Speed

· May work to assist hip flexors

From when one foot strikes the ground and continues until the same foot again

strikes the ground (Slocum & James, JAMA 1968)

contact of one foot to initial contact of the opposite foot (Dugan Bhat 2005, Ounpuu 1995).

180 steps/min suggested as

optimum for performance

Distance from initial

Stride

Step length

Cadence

Muscle Function

Biomechanics-Speed

- Speed = Stride length x Stride frequency
- · With increased speed...
 - There is an initial increase in step length, then a transition to an increase in cadence or step rate
 - Stance time decreases and swing time increases (DiCharry, Clin Sports Med 2010; Brisswalter & Legros, Percept Mot Skills 1995; Cavanagh & Kram, Med Sci Sports Exerc 1989; Ito et al, Med Sci Sports Exerc 1983; Yokozawa et al, Int J Sport Health Sci 2005)
 - Peak ground reaction forces and the rate of loading increase (Weyand et al, J Appl Physiol 2000)

Sprint Model Hay & Reid, Anatomy, mechanics and human motion (2nd ed) 1988

Sprint Model

Increasing stride length, stride frequency, or force production, or decreasing ground contact time will all increase speed.

Sprint Model

- Vertical displacement
- Decreases with increased running speed (Mero et al, Sports Med 1992)
 Hip Extension
- Faster sprinters extend hip further (Kunz & Kaufmann, Br J Sports Med 1981) Maximum Velocity
- Attained after 25 to 50m depending on performance level
 Derformance is limited by the ability of the attribute to maintered
- Performance is limited by the ability of the athlete to maintain speed (Harrison, ISBS 2010)
 Leg Stiffness
- Higher leg spring stiffness in sprinters (Harrison et al, J Strength Cond Res 2004)
 Breaking Phase
- Less in faster sprinters (Mero et al, Sports Medicine 1992)

Sprint Model

- Acceleration Phase
 - 30-50m in top sprinters in a 100m race
 - Gradual decrease in contact time
 - COG anterior in early stages of acceleration
- Constant Speed Phase
- Deceleration Phase
 - Stride rate decreases
 - Stride length slightly increases
 - Contact and flight times increase

Curve Running

- Maximum running speed on a flat curve is significantly slower relative to straight plane running (Chang & Kram, J Exp Biol 2007)
- 200m sprinters up to 0.4s slower on curves
 Attenuation of sprint speed is more pronounced as the radius of curvature is reduced
 - Advantage of up to 0.12s over a competitor in an adjacent inside lane (Jain, Res Q Exerc Sport 1980)

Curve Running-Biomechanics

- Straight path – Lateral forces negligible
- Peak vertical impact GRF equals the peak resultant GRF
- Curved path
- Lateral force comprises a significant portion of the total resultant force
 For the peak resultant
- For the peak resultant GRF on the curve, the vertical impact GRF will be smaller relative to a straight path (Greene, J Biomech Eng 1985)

Chang & Kram, J Exp Biol 2007

Curve Running-Biomechanics

- To maintain a curved path, a lateral force away from the center of the curve results in a centripetal force
- Trunk lean towards the center of the curve of the track

 Inside foot pronated at IC
- Inside foot pronated at IC
 Outside foot supinated by 5°+
- Potential exists for runners to adversely alter running symmetry thus increase risk for injury (Beukeboom et al. *Clin J Sports Med* 2000)
 Inside leg with lower vertical impact GRF and a shorter time to impact force

Hamill et al, Int J Sport Biom 1987

Banked Tracks

- 200-meter oval track
 Four to eight lanes
- Curves are banked at 10 degrees (18% grade)
- Slight uphill grade going into the curve, then downhill grade coming off the turn
- Angle of the track redirects the runner inward with less effort

Block Start

- 100m-400m races
- Clearance time from the starting blocks accounts for approximately 5% of the total 100m race time (Tellez & Doolittle, Track Tech 1984)
- A lower block angle (40°) leads sprinters to a 3.6% higher blockinduced impulse than a higher block angle (65°) (Mero et al Sports Sci. 2006)

